Am Karlsbad 26 (Berlin)

Aus veikkos-archiv
Version vom 20. März 2017, 20:41 Uhr von WikiSysop (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Walther Nernst wohnte 1907 an dieser Stelle.

Walther Nernst (* 25. Juni 1864 in Briesen (Westpreußen); † 18. November 1941 in Zibelle (Oberlausitz); vollständiger Name Walther Hermann Nernst) war ein deutscher Physiker und Chemiker. Für seine Arbeiten in der Thermochemie erhielt Nernst den Nobelpreis für Chemie 1920.


Laufbahn

Nach dem Gymnasium in Graudenz studierte Nernst Naturwissenschaften in Zürich, Berlin und Graz. 1883 begann er sein Studium in der Schweiz bei Heinrich Friedrich Weber (Physik), Arnold Meyer (1844–1896) (Mathematik) und Viktor Merz (1839–1904) (Chemie). 1885 wechselte er nach Berlin zu Richard Börnstein (Physik), Georg Hettner (Mathematik) und Hans Heinrich Landolt (Chemie).

Seine physikalischen Interessen konnte er ab 1886 bei Ludwig Boltzmann vertiefen. Zusammen mit dessen Assistenten Albert von Ettingshausen entdeckten beide nach kurzer Zeit den Ettingshausen-Nernst-Effekt, bei der mathematischen Diskussion unterstützte Heinrich Streintz in Graz.

Zur weiteren Bearbeitung des Themas bot ihm Ende 1886 Friedrich Kohlrausch eine Promotionsstelle in Würzburg an, denn die Technische Hochschule Graz erhielt erst 1902 das Promotionsrecht. Schon im Mai 1887 promovierte er hier „Über die elektromotorischen Kräfte, welche durch den Magnetismus in von einem Wärmestrome durchflossenen Metallplatten geweckt werden“. Zusammen mit Svante Arrhenius, der sich zu diesem Zeitpunkt in Würzburg aufhielt, kehrte er Mitte 1887 wieder nach Graz zurück. Diesen Zeitpunkt wählte Wilhelm Ostwald für einen Forschungsbesuch in Graz, um sich auch mit seinem Freund Arrhenius wieder zu treffen. Bei dieser Gelegenheit nahm Nernst Ostwalds Angebot für eine Habilitation in Leipzig an.

Seine am 23. Oktober 1889 in Leipzig abgeschlossene Habilitationsarbeit über „Die elektromotorische Wirksamkeit der Jonen“ bestätigte die ursprünglich von Arrhenius aufgestellten und später von Ostwald weiterentwickelten Modellvorstellungen über Ionen.

1890 war er kurzzeitig Privatdozent an der Universität Heidelberg, dann wechselte er an die Universität Göttingen, wo er Assistent und Privatdozent bei Eduard Riecke war und 1891 zum außerplanmäßigen Professor und 1895 zum Ordentlichen Professor ernannt wurde. 1905 wechselte er als Ordentlicher Professor für physikalische Chemie an die Berliner Universität und hatte dort von 1924 bis 1932 den Lehrstuhl für Physikalische Chemie inne. Zugleich war er von 1905 bis zu seinem Tod Ordentliches Mitglied der Königlich-Preußischen Akademie der Wissenschaften und in den Jahren 1920/1921 Rektor der Berliner Universität und von 1922 bis 1924 Präsident der Physikalisch-Technischen Reichsanstalt.


Elektrochemie

Seine erste Arbeit bei Wilhelm Ostwald behandelt die Konzentrationsketten verschieden konzentrierter einheitlicher Elektrolytlösungen. Die Ionen der konzentrierten Lösung wandern durch Diffusion in die Lösung mit schwächerer Konzentration. Je nach Wanderungsgeschwindigkeit können Kationen oder Anionen bei der Diffusion vorauseilen. Aufgrund der notwendigen Elektroneutralität in der Lösung müssen jedoch entgegengesetzt geladene Ionen den Ladungsunterschied ausgleichen, so dass die entgegengesetzten Ionen mit den schnell wandernden Ionen mitwandern. An der Phasengrenze entsteht ein Diffusionspotential.

Aufbauend auf den Arbeiten von Svante Arrhenius und Jacobus Henricus van ’t Hoff beschrieb er 1889 in seiner Habilitation die Prozesse in galvanischen Zellen. Ähnlich dem Dampfdruck über einer Flüssigkeit oder dem osmotische Druck zwischen verschieden konzentrierten Lösungen herrscht bei galvanischen Zellen ein elektrischer Lösungsdruck, welcher der Elektrolytkonzentration proportional ist. Beispielsweise setzt bei einem Daniell-Element die unedle Elektrode, ein Zinkstab, positive Zinkionen frei, wodurch sich diese Elektrode negativ auflädt. An der edleren Elektrode, dem Kupferstab, ist der Lösungsdruck sehr klein, insgesamt werden sich daher positive Kupferionen zu Kupfer abscheiden und die Elektrode positiv aufladen. Werden beide Elektroden des Daniell-Elements metallisch verbunden, folgt ein Ladungsausgleich, es fließt also ein Strom. Nernst hat diesen elektrochemischen Prozess durch eine Differentialgleichung beschrieben. Die Lösung der Differentialgleichung ist als Nernst-Gleichung bekannt. Sie gilt nicht nur für galvanische Zellen, sondern für alle Redoxreaktionen in der Chemie, und stellt auch eine Verbindung der Elektrochemie zur Thermodynamik her.

1891 entwickelte Nernst das Nernstsche Verteilungsgesetz. Es klärt Fragen zur Verteilung eines Stoffes zwischen zwei Flüssigkeiten und ist für die Chromatographie und Extraktion von Bedeutung.

Im Jahr 1892 untersuchte Nernst die Potentialspannungen an Phasengrenzflächen, z. B. an der Grenze zwischen Silber und Silberchlorid. Bei der Dissoziation von Salzen und Säuren in verschiedenen Lösungsmitteln erkannte Nernst zusammen mit Paul Walden eine Abhängigkeit von der Dielektrizitätskonstanten des Lösungsmittels.

1893 schrieb er sein Lehrbuch der Theoretischen Chemie, 1895 in Zusammenarbeit mit Arthur Moritz Schoenflies eine Einführung in die mathematische Behandlung der Naturwissenschaften.

Nernst schlug vor, auf das Auffinden des absoluten Normalpotentials bei der elektromotorischen Kraft zu verzichten und stattdessen alle Potentialwerte auf die mit Wasserstoff umspülte Platinelektrode in 1-normaler Säure zu beziehen. Der Vorschlag fand Zustimmung: Normalpotentiale seitdem auf diese Elektrode bezogen.

1907 befasste sich Nernst mit der Berechnung der Diffusionsschicht bei einer Elektrolyse. Die konzentrationsabhängige Schicht direkt vor der Elektrode, deren Schichtdicke von der Diffusion abhängt, trägt seitdem den Namen Nernstsche Diffusionsschicht.


Andere Gebiete der physikalischen Chemie

Neben der Elektrochemie forschte Nernst auch in anderen Bereichen der physikalischen Chemie, z. B. hinsichtlich von Reaktionsgeschwindigkeiten, heterogenen Gasgleichgewichten und flüssigen Kristallen Außerdem hat Nernst Licht als ausreichende Energiequelle zur Spaltung des Chlor- und Wasserstoffmoleküls zu Chlorwasserstoff erkannt und einen dafür maßgeblichen Mechanismus abgeleitet. Damit machte er einen wertvollen Beitrag für die Quantenmechanik von Max Planck.


Dritter Hauptsatz der Thermodynamik

1905 formulierte er in seiner Vorlesung an der Berliner Universität den 3. Hauptsatz der Thermodynamik (Nernstscher Wärmesatz, Nernst-Theorem). Offiziell stellte er seine Theorie am 23. Dezember 1905 der „Königlichen Gesellschaft der Wissenschaften zu Göttingen“ vor. In der weitergehenden Formulierung von Max Planck ist die Entropie am absoluten Nullpunkt Null. Eine Konsequenz hieraus ist die Unerreichbarkeit des absoluten Nullpunktes der Temperatur.


Weitere Arbeiten

Nernst erfand in Göttingen 1893 ein neues Verfahren zur Messung der Permittivität und 1897 die Nernstlampe. Er untersuchte mit praktischer Bedeutung für Automobile die Prozesse in Verbrennungsmotoren, wobei er als einer der ersten zur Leistungssteigerung die Lachgaseinspritzung anwandte. Beteiligt war er an der Entwicklung des ersten Elektronischen Pianos, dem Bechstein-Siemens-Nernst-Flügel (Neo-Bechstein).



Text: Wikipedia

Liste der Autoren

Der Text ist unter der Lizenz „Creative Commons Attribution/Share Alike“ verfügbar; zusätzliche Bedingungen können anwendbar sein. Einzelheiten sind in den Nutzungsbedingungen von Wikipedia beschrieben.